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1. INTRODUCTION

One of the fundamental results in the classical Sturm-Liouville theory of
eigenvalue problems for a single second-order ordinary differential operator
is that the eigenfunction corresponding to the nth eigenvalue under zero
boundary conditions has n— 1 interior zeros. For elliptic partial differential
operators the general question of classifying eigenfunctions remains open,
but it has been known for a long time that in the case of a self-adjoint
second-order operator with Dirichlet boundary conditions the eigen-
function corresponding to the first eigenvalue does not change sign; see
[6]. In the last few years the existence of a real first eigenvalue charac-
terized by a sign-definite eigenfunction has been shown for non-self-adjoint
second-order elliptic operators [117] and certain systems of such operators
[1, 3] via the theory of positive operators; in the case of systems, positivity
is interpreted componentwise, so all components of the first eigenfunction
are of one sign. More recently such results have been extended to operators
[8] and systems [5, 7] with indefinite weight functions or matrices.

In the present article we consider in more detail the system

Lu=A(m, u+m,v)

in ‘ 1.1
Lv= A(my u+ myv) m (L1)

u=v=0 on 08,

where 2 < R" is a bounded domain with smoo’th boundary, L is a second-
order uniformly strongly elliptic operator of the form

Lw=— 3 ayX) W+ Y b(x)w,+e(x)w (1.2)
=1 =1
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with a;=a;, ¢>0, and coefficients in C*(2) for some «e(0, 1), and
my(x)>0 on Q, mye C*(Q) for i,j=1,2. We shall sometimes use M to
denote the matrix (m;). We study two types of solutions to (1.1). The first
type of solution is the type shown to exist in [1], with both components
positive. For such solutions we consider a problem that only makes sense
in the context of systems, namely that of determining the relative size
(alternatively, bounding the ratio) of the components in terms of the
matrix M. The second type consists of those solutions (if any) with both
components nonzero in 2 but of opposite signs. Such solutions were obser-
ved to exist in the case where M is a constant matrix satisfying appropriate
conditions in [27; we consider the question of existence of such solutions
in the general case where M may vary with x. Our results are not complete,
but they indicate that the existence of such solutions depends on the struc-
ture of the system (1.1) in a very delicate way, and make it appear unlikely
that existence results for such solutions can be obtained by a
straightforward application of the theory of positive operators on cones.
Some of our ideas and results are related to the concept of generalized
spectrum for (1.1). The generalized spectrum consists of the set of pairs
{4, u) for which the problem
Lu=Am;u+m;v)

Lo = p(my u+ mpv) " (13)

u=v=0 on 0¢2

has a nontrivial solution (u, v). The term generalized spectrum was intro-
duced by Protter in [107] in connection with estimating eigenvalues; similar
ideas arise naturally in multiparameter bifurcation/continuation problems;
see [2]. Properties of the generalized spectrum are discussed in [37]. It
follows from results of [1, 37 that for any fixed positive value of the ratio
w/%, (1.3) will have a solution with both u and v positive in @ for some A.
In the present article we address the question of how the ratio u/v behaves
as A/p varies, especially when 4/u tends to zero or infinity. '

In our analysis in [4] of the stability of steady states of a reaction diffu-
sion model from mathematical biology, we found that some relevant
bounds for eigenvalues of the linearized system depended on the relative
sizes of the components of an eigenvector. (This is not explicitly stated in
[4] but is implicit in some of the computations.) The present article does
not fully answer the questions raised by [4], but gives a first step toward
an answer.

Remarks on Notation

At various places in what follows we will want to compare functions
which are zero on 9Q2. To be sure that ratios of such functions exist and are
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finite we need to know something about their behavior on 9Q. It follows
from the strong maximum principle that if Lw>=01in 2, w>=0in 2, w=0
on 0Q, and w # 0, then w>0 in Q and dw/on<0 on 02, where d/on
denotes the outer normal derivative. We shall write w> 0 if w>0 in Q,
w=0 on 69, and dw/on <0 on 02. The above discussion shows that if ¢
is the eigenfunction corresponding to the first eigenvalue A;(m) for the
single equation L¢ = Amg¢ in Q, ¢ =0 on 92, then ¢ > 0. The significance of
these observations is that if @, > 0 then the supremum of ¢/ over Q is
defined and finite.

In looking for solutions to (1.1) with, say, u>0 and v <0, we will some-
times find it convenient to replace v by w= —v and consider the system

Lu=A(mu—myp,w)

(1.4)

Lv= A(—my u+myuw).

The question of solving (1.1) with #>0 and v <0 is equivalent to that of
solving (1.4) with >0 and w > 0; we shall utilize that equivalence in what
follows without further comment.

2. SuM TECHNIQUES

The results of this section are based on the following:

LemMa 2.1 (Positivity Lemma). Suppose that m(x)e C*(Q). There is a
unique value 1,(m) with 1,(m)e (0, o0) if m(xy)>0 for some x, € and
Am) =00 if m<0 on Q such that the problem

Lu—Jmu=f in Q,u=0o0noQR (2.1)

with 220, f=0, and f # 0 has a positive solution if and only if <A (m).
If A< A(m), the solution of (2.1) is unique. The value A (m) is nonincreasing
with respect to m.

Discussion. Lemma 2.1 is essentially contained in the results of [8],
which are based in large part on the theory of positive operators. If
m(xy)>0 at x,e 2, then 4,(m) is the eigenvalue with least positive real
part for the problem Lu= Amu in Q, u=0 on 0Q; 4,(m) is the only positive
eigenvalue with positive eigenfunction.

We now consider the system

Lu=Alm u-+my,v)

in Q .
Ly = A(my;u+ my,v) n (22)

u=u=.0 on 00,
where m; e C*(Q); m;>01in Q for i, j=1, 2.
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THEOREM 2.2. If u and v satisfy (2.2) and are positive in 2, then
Bv<u and  u<yv, (2.3)

where

B=sup{a=0:my,+a(m,, —my) —oa’my; >0in 3}
y=1nf{o>0: m, + o(m; — my,) — a’my <0 in Q).
Proof. First we observe that (2.2) implies that Lu— Am, u= Amy,v >0,
so by Lemma 2.1 we have 1<i,(m)<A,(m;; —am,,) for any «>0.

Multiplying the second equation in (2.2) by « and subtracting it from the
first yields '

L(u—ow) — A[myy — amyy J(u—av) = A[my; + a(m;; — my,) — a2y, ] .

Since A< (my —am,,), it follows from Lemma 2.1 that if
Wy +o(my —my)—a’my >0 then u—av>0 or av<u Taking the
supremum over such >0 yields the first inequality in (2.3). A similar
analysis of the case m,+a(m,, —my)—a*m, <0 yields the second
inequality in (2.3).

Remarks. Let my=sup{my(x): xe 2} and m;=inf{my(x): xe 3}. Then
for =0,
My + o1y —myy) — oy = my, + a(myy — may) — oy,
Thus
B = {my — g+ [y —my, ) + dm 7, ]2 312173, (2.4)
and
Y <y — gy + [0 — 111,) + 41,5, 12 2m,. (2.5)
We can apply Theorem 2.2 and the remarks following it to generalized

spectrum problems as discussed in [3]. Suppose u and v are positive in Q
and satisfy '

Luf:l(fnuu +m12v)
Lv = pu(mq u+ my,0)

u=pv=0 on 0Q2

inQ (2.6)

with A, p positive. The system (2.6) can be rewritten as

Luy=2A(m;u+m,v)

2.7
Lo = A(oms 1+ amy,v) (2.7)
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with o= p/A. If we now apply (2.3), (2.4), and (2.5) to system (2.7) we
obtain the estimates

{’1111 ~ 0ty + [(01 — my, ) + dom, 77121]1/2}/2’7121“ s.u/v (2.8)

and

ufo < {My —oma + [(omay — 1y ) + 4oy ,my 172} 2my 0.

It follows from [3] that (2.6) has positive solutons u and v for (4, p)
lying on an arc in the first quadrant of the A— u plane which connects
points (4o, 0) and (0, y,), where Ay, 4o and pq, v, are the first eigenvalues
and eigenfunctions for the problems Lu=Am,,u in Q, u=0 on 0Q and
Lv=JAmyv in Q, v=0 on 0%, respectively. As (4, ) - (4o, 0) along the
arc, the normalized eigenvector (u, v) — (1o, 0); similarly as (4, u) = (0, ),
(u, v) = (0, vy). The estimates (2.8) give bounds on the rate that u/v blows
up as (4, u) = (4o, 0) or goes to zero as (4, u) — (0, ). An examination of
(2.8) shows that for positive u, v satisfying (2.6) we have u/v~A/y as
(4/1) > 0 or (/) — co.

Next we give a result providing a necessary condition for the existence
of a solution to (2.2) with one component positive and one negative.

- THEOREM 2.3. Suppose that supm,;(x)supm,,(x)—infm ,(x)infm,,(x)
<0. Then for 120, (2.2) cannot have a solution u, v with u>0 and v <0
in 2, or u<0 and v>0 in Q.

Proof. Since sup m,;(x) sup myy(x)—inf m,(x) inf m,,(x) <0, we have
sup(my /m,,) <sup my,/inf m,, <inf m,,/sup m,, <inf(m,,/m,,); thus there
exists an « such that 0 <my,/m,; <a <m,/m,, in G, that is, m,, — am,, >0
and am, —my; >0. Suppose that ¥>0 and v<0 satisfy (2.2). (If <0,
v>0, consider (—u, —v).) Multiplying the second equation in (2.2) by «
and subtracting the first from it, we obtain

L(ow —u)= ALom, u+ oy v —my u—my,v]
= AL (oamy; —myy) u— (M —amy) 0] >0.

Thus, by Lemma 2.1, ev—u>0. However, >0 and v <0, so av—u<0,
which yields a contradiction. Thus, there can be no solution with sign
definite components of opposite signs.

3. SiMILARITY METHODS

The results of the last section were based on the observation that for the
type of systems we consider linear combinations of the components of a
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solution satisfy equations related to those occurring in the system. We now
examine the effect of applying certain linear transformations to the system
as a whole, and show how systems whose eigenvectors have certain desired
properties (such as sign definite components) can be generated. Let
&L = LI, where [ is the 2x2 identity matrix, let w=col(y, v), and let
M = (m;). We can write our system as

FLw = AMw in 2

: 3.1)
w=0 on 082.

Our basic observation is that if S is a nonsingular 2x2 matrix of
constants then S and S—! commute with .&; if we let z=S"1w then we
have

Fr=S"'LS1=5"Lw=1S""'MSz in £,

. (3.2)
z=S"'w=0 on 9.

Thus, we can allow the group of automorphisms generated by the inver-
tible 2 x 2 constant matrices to act on M, and we see that the spectrum of
(3.1) is preserved under that action. Also, if we have a system which admits
a solution w with some specified property such as sign definiteness of its
components, we can construct other systems with solutions possessing that
property by finding matrices S such that S~' preserves the property in
question and then using (3.2).

For applications to bifurcation theory it is important to view 1 as a
characteristic value of %~ !M and to decide if its algebraic and geometric
multiplicities are the same. Such will be the case provided the nullspaces for
I-1%"'M and (I—A%~'M)* are the same. It turns out that this
property is preserved under similarity transformations, as can be seen by a
routine calculation. We have

PROPOSITION 3.1. Suppose that [I — A% 'M1*v =0 implies [I —
AL '"M]v=0, provided ve [CiR2)]%. Then for any nonsingular 2x2
constant matrix S and ve [CHRQ)]* [[—AL'ST'MS1’v=0 implies
[[—2%~'S~'MS]v=0.

Suppose now that

_f My =My,
—My My

and that system (3.1) has a solution w=col(y, v) with ¥>0 and v>0.
Then the system with M replaced by S™'MS has a solution z=S""'w.

316 CANTRELL AND COSNER

Moreover z has strictly positive components provided that S~! is a positive
definite constant matrix with nonnegative entries. In particular, we have
the following hyperbolicity principle.

THEOREM 3.2. Suppose that (3.1) has a solution w = col(u, v) with u>0

and v> 0, where
m — My,
M=( !
—My My

and m;>0 on Q. Then if

(O ma)

@
— UMy, My

the system ¥£z.=AM,z has a solution with positive components for any a > 0.

Proof.
S A G

Let us now consider the following special system:

Lx=A[m;x—m,y]

in 2 3.3
/ Ly=A[—mx+myy] (3:3)
x=0=y on 08,

where m;;, m; >0 on Q and (m,; — m,)(x,) >0 for Some x,€ Q. Observe
that if (3.3) is satisfied then

L(x +y)=Amy; —mp)(x+y)
and
L(x—y)=A(m +m;)(x~y).

Consequently, x + y =az, where Lz = A(m, —m,,) z, and x — y = Bw, where
Lw=A(my; +m;;)w. Hence if A=24,(m;; —m;)>4,(m,; +m,,), system
(3.3) has a componentwise positive solution. Moreover, 4,(m,, —m,,) will
be a simple eigenvalue for (3.3) provided that A,(m,,—m,,) is not an
eigenvalue of

Lx=0(m; +my)w in Q

w=10 on dfQ2.
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(Consequently, eigenvalues for (3.1) admitting componentwise positive
solutions need not be simple, which, as noted in Section 1, suggests that
the Krein—-Rutman theorem is not well-suited to the investigation of the
existence of componentwise positive solutions to (3.1).)

We may now use (3.3) and similarity transformations to generate a class
of matrices M for which (3.1) has a componentwise positive solution.

THEOREM 3.3. Suppose that h, ke C*(Q) with h>k>0 on Q. Let 6>0
be such that 6 <max, g (h(x)/k(x)). Then

h+k —k
Mz(—(azml)k h—k)

is such that Lw=AMw admits a componentwise positive solution for some
A>0. Moreover, if > 1, M has the form

my, — My,
—My My

Proof. Consider the system

with m; > 0.

Lu=A[hu—ckv]

34
Lv=A[ —cku+ hv]. (34)

1

Since (h— ok)(x,)>for some x4, (3.4) is of the form (3.3) and admits a
componentwise positive solution when A= A1,(h—ok). Let

5=(te 1)

S“=<1 0) and M=S”‘<h "”k)s

Then

1 o —ok h

and the result follows from the discussion preceding Theorem 3.2.

CorROLLARY 3.4. Suppose that f, ge C*(Q) with f>g>0 on Q. Then if

f o —af-g) (f2)(x)
= = (S B —
M <—5(f—~g) g > and 1=0 <?35<<f—g>2(x)>’

there is a 1 >0 so that (3.1) admits a componentwise positive solution.

—

S T—— =
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Proof. Theorems 3.2 and 3.3 imply that it suffices to show that

<~4v((1{-g)/2) _(f; g)/z)

has the form

h+k —k
(—(62— Dk h——k)
with h, ke CH(Q), h>k>0, and 1 <o <max,g(h(x)/k(x)). Taking h=
(f+g)/2 and k=(f—g)/2, we need only show ./4y+ 1 <max, g(h(x)/
k(x)).  Now  y<max,.s((fg)(x)/(f—g)*(x)) =max,.a((h* —k)(x)/
(4k*)(x)). Hence 4y <max,.o[h*(x)/k*(x)— 1] = [max,.a(h*(x)/k*(x))]
k— 1. Thus 4y + 1 <max, s[A(x)/k(x)]* and so /4y +1<max,.g(h(x)/
(x))-

Remark. From Theorem 2.3, a necessary condition for the existence of
a componentwise positive solution is

(supf)(sup g)
[inf(f—g)1*
Consider once again (3.1) in the special case where
I —a(f— g)>
M:
< —o(f—g) g

and f, g, 0, and ¢ are as in the statement of Corollary 3.4. By Corollary 3.4,
there are solutions to this system with positive components of the form

(a b (u

c d\v)’

where a, b, ¢, d are nonnegative, ad—bc+0, and w=(¥) is a com-
ponentwise positive solution to #w= AMw with M of the form

( UOT —m12>

—my  my )

From the discussion following system (3.4) we may take u=v. Conse-
quently

gw=ain (M=(_o0 70 7))
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has componentwise positive solutions for some A>0 with components
which are multiples of each other. We conclude this section by observing
a slightly more general condition on M which must be satisfied in order
that #w = AMw have solutions w==(%’) with »> 0 and & > 0. Namely, sup-
pose that w is a solution; then by eliminating Lv from the resulting system
and simplifying we find that we must have m,, a® + (m;, — my,) 6 —m, =0.

4. PERTURBATION TECHNIQUES

Let us now consider

Lu=A(mu—tm;,v)

in Q, 41
Lv=l(—tm21u+m221)) n ( )

where
u=0=v on £ (4.2)

and ¢ is a sufficiently small positive number. In addition, throughout
this section we assume L to be formally self-adjoint. It is evident that
(4.1)}-(4.2) satisfies the necessary conditions of Theorem 2.3 for the exist-
ence of a componentwise positive solution so long as ¢ is sufficiently small
under the assumption of positivity on my, i, j=1, 2. We now explore the
question of the existence of componentwise positive solutions to (4.1)}-(4.2)
in closer detail. Let A,(m,,) and 1,(m,,) denote the unique positive eigen-
values of

Lw=Am;w inQ
w=0 on 092

for i=1, 2, respectively, admitting positive eigenfunctions ¢ and , respec-
tively.

LEmMa 4.1. Ler ¢>0 be given. Then there is a ty>0 such that if
(4.1)-(4.2) admits a positive solution for some (4, t) with 0 <t <ty and >0,
then max(d,(my;), A1(ma)) <i<(1+¢) max(4,(my,), 4,(ma)).

Proof. Suppose that x>0 and v > 0 solve (4.1)~(4.2) for some 4> 0 and
t>0. Consider the first equation of (4.1). Multiplying both sides of the
equation by ¢ and integrating by parts via the divergence theorem yields

Ay(myy) Lz myy u =4 L) my pu— At Lz my; v
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S.ince [ m, ¢u and @ my, dv are positive, A,(m,;) < A. A similar argument
gives 1;(my,) <A So max(4,(m,,, A,(ms,)) < A
Once again, consider the equations

Rama) [ musgu=2[ mygu—1[ gy
and

Ay(my) fg My = —1 Lz ’mz; Yu+ i L) my v

obtained as described above. Combining the equations we have

'1.[ (myy @ — tmy i) ”’*‘ALQ (M —tmy,4)v

= Ay(myy) J‘Q myy u+ Ay(my;) L) may .
But now there exists a #,>0 such that 0 < <z, implies

1
m11¢—tm21¢>mm11¢

on £ and that

1
My th — 1m12¢>“1—_}“_—8m27'//

on £. (That such is the case follows since ¢, ¥ >0.) Consequently, if
O<t<ty,

A A

a— m U+
I+elo ug I+e

L} My v < A (my,) L my gu + Ay(my,) L) myYo.

Hence 1< (1 +¢)max{4,(m,,), 4,(mz)}. .

Let A=max{4,(m,,;), 1,(m,,)}. Let | ||, denote the norm of the Holder
space C*((2), and recall that by standard elliptic theory L~! is compact
on C*(£2). If there exists a sequence {(t,, 4,, u,, v,)}=_, of solutions to
(4.1)-(4.2) with ¢,-0, 1,>0, u,>0, v,>0, and |u,|,+ llv,]l.=1, then
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A,— 4 and by compactness of L' we may assume u, - i, v, — i, where
uz0, 520, i, + 9],=1, and
,  LE=dmugd o 43)
L= Amoy, 1.
u=0=7v on 0. (4.4)

Hence componentwise positive solutions to (4.1)-(4.2) only arise as pertur-
bations of nonnegative solutions to (4.3}-(4.4). Since L™' is compact,
(4.1)-(4.2) may be recast as an eigenvalue problem for a compact linear
operator A4(¢) depending analytically on z. If 1,(m,,) % A,(m,,), then 1/1 is
an algebraically simple eigenvalue for 4(0) and the results of [97] guarantee
the existence of a smooth curve of eigenvalues and normalized eigen-
functions for A(t), |¢| small. (See [3] for further discussion.) Let us now
suppose that A,(m,;)<A,(m,,). (It is easy to see that the assumption
Man(x) <my,(x) on £ is sufficient in this regard.) Consequently, we may
assume that a smooth curve of solutions has been selected and formally
differentiate (4.1).
So doing, we obtain

Lu' = A'(myu—tm,0)+ Amyu' — tm, 0" — my,0) 45)
Lv' = A'(—tmayyu+mypv) + A — tmay ' + M ' — myy u), .

where A', o', v’ indidate the derivatives of 4, u, and v with respect to ¢ If
now, t=0, 1=1,(my), u=0, v=14, (4.5) reduces to

L' (0) = Ay (may)(my ' (0) — my )

(4.6)
Lv'(0) = 1'(0) map Y + 4,(m23) my,0'(0).

Consider now (4.6). Since Y >0, v(¢) > 0 for t> 0 and small. Consequently,
(4.1)-(4.2) has a positive solution for A>0 and ¢ >0 and small if 2'(0)> 0.
We have now established the following result.

THEOREM 4.2. Suppose that A(m,)) and A(m,,) denote the unique
positive eigenvalues of

Lw=Am;w in 2
w==0 on 0Q2

admitting positive eigenfunctions ¢ and Y, respectively, i=1, 2. If
Ay(my) < A\(ms,) and (L — A (ma,) my,) " exists, then (4.1)(4.2) has com-
ponentwise positive solutions with A>0 for t >0 and small if

— (L= Ay (mz) myy) = (mup ) >0,
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- COROLLARY 4.3. Suppose now that m,; >m,, on 2, (L— A,(m,,) my )t
exists, and that m, =k(m;, — m,,), where k is a positive constant. Then the
result of Theorem 4.2 obtains.

Proof. Observe that (L — A)(myp)myy) ¥ = (L — A,(my) mp) ¥ +
Ai(ma)(myy —myy) Y = —(4,(my,)/k) my,. Consequently, (k/Ay(mpn)) b =
—(L =4y (mp) my) " (my, ).

Corollary 4.3 has an immediate consequence, which connects Theorem
4.2 to the results of [2].

COROLLARY 44. If my, i, j=1,2, are positive constants, with m,, > My
and (L — A,(my,) my,) ™! exists, the result of Theorem 4.2 obtains.

An additional criterion for the result of Theorem 4.2 to hold may be seen
as follows. Since Lg=A4,(m;;)m, ¢, we have that (L—4,(myp)m;,) ¢=
(A4(myy) = Ay(myy)) my, 4, and so

Ai(my) b=
Ai(my)—4 1(myy)

—A1 (M) (L — A,(my) myy)~ (m11¢)

Consequently, since (L~ A,(m,,)m,,)~" may be viewed as a continuous
operator between the Holder spaces C*(Q) and C3+#(Q) and ¢>0, it
follows that u'(0)> 0 provided ||m; ¢ —m ||, is sufficiently small. ()} |,
denotes the usual norm in C*(Q).)

Finally, we give an example of a system of the form (4.1)-(4.2) which has
no positive solutions for >0 and small. Suppose that Q= [0, IT],
L= —(d*/dx*), my;=ae(1,4), my=1, and My =My = (I1/2)(2 + cos x).
Then A,(m,;)=1/a, ¢=(2/H)sin x, 1,(my,) = 1 t//—(2/]]) sin x. The top
equation of (4.6) then yields

—d*(w,)

g W= —2 sin x —sin x cos x
2

(4.7)
wo(0)=w, (1) =0,

where w,(x) = [#'(0)],(x). An elementary calculation will show that

W, = 2 sin x + 1 sin 2x
“Ta—1 2(a -4)

=sin 2 + 1 cos x
—SIxa_1 o .

Hence w,(x)>0 exactly as h,(x)=2/(a—1)+(1/(a—4))cos x>0 on
[0, IT]. Since hy(x)=(1/4—a)sin x>0 on (0, 1), h,(x)>0 on [0, IT]
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provided 4,(0)>0. But £,(0)=(3(a—3)/(a—1)(a—4)). Consequently, if
ae€ (3,4), the system has no positive solution for > 0 and sufficiently small.
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